Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl 4-cyano-5-iodo-3-methylthiophene-2-carboxylate

Jan Moncol, ${ }^{\text {a* }}$ Zita Puterováb ${ }^{\text {b }}$ and Daniel Végh ${ }^{\text {b }}$

${ }^{\text {a }}$ Institute of Inorganic Chemistry, Technology and Materials, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia, and ${ }^{\mathbf{b}}$ Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology,
Radlinského 9, SK-812 37 Bratislava, Slovakia
Correspondence e-mail: jan.moncol@stuba.sk

Received 21 August 2007; accepted 22 August 2007

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.026 ; w R$ factor $=0.067$; data-to-parameter ratio $=20.6$.

The title compound, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{INO}_{2} \mathrm{~S}$, was synthesized by starting from ethyl 5-amino-4-cyano-3-methylthiophene-2-carboxylate via Sandmeyer-type deamination, replacing the NH_{2} group by iodine. In the crystal structure, molecules form a twomembered cyclamer held together by $\mathrm{CN} \cdots$. I intermolecular Lewis acid-base interactions. The $\mathrm{N} \cdots \mathrm{I}$ distance, and C $\mathrm{I} \cdots \mathrm{N}$ and $\mathrm{N} \cdots \mathrm{I}-\mathrm{C}$ angles are 3.142 (3) $\AA, 166.9(1)^{\circ}$ and $123.1(1)^{\circ}$, respectively.

Related literature

For related literature, see: Apinitis et al. (1984); Bailey et al. (2000); Bond et al. (2001); Britton (2001, 2004); Britton \& Gleason (2002); Desiraju \& Harlow (1989); Metrangolo et al. (2004); Nyburg \& Faerman (1985); Ojala et al. (1999).

Experimental

Crystal data
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{INO}_{2} \mathrm{~S}$
$\gamma=86.166(2)^{\circ}$
$M_{r}=321.12$
Triclinic, $P \overline{1}$
$a=4.3132$ (1) \AA
$b=9.4355$ (3) \AA
$c=13.8210(4) \AA$
$\alpha=87.736$ (2) ${ }^{\circ}$
$\beta=84.396(2)^{\circ}$

Data collection

Oxford Diffraction Gemini R CCD diffractometer
Absorption correction: analytical (Clark \& Reid, 1995)
$T_{\text {min }}=0.383, T_{\text {max }}=0.872$

16856 measured reflections 2663 independent reflections 1947 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.067$
129 parameters
$S=1.02$
H -atom parameters constrained
2663 reflections
$\Delta \rho_{\text {max }}=0.95$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.47$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 C \cdots \mathrm{O} 2$	0.96	2.55	$3.031(4)$	111

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors thank the Grant Agency of the Slovak Republic (grant Nos. G1/4453/07 and APVT-20-007304) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2315).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Apinitis, S. K., Kemme, A. A., Bleidelis, Ya. Ya., Palitis, E. L. \& Gudrinietse, E. Yu. (1984). Latv. PSR Zinat. Akad. Vestis Khim. Ser. pp. 737-740.

Bailey, R. D., Hook, L. L., Watson, R. P., Hanks, T. W. \& Pennington, W. T. (2000). Cryst. Eng. 3, 155-171.

Bond, A. D., Griffiths, J., Rawson, J. M. \& Hulliger, J. (2001). Chem. Commun. pp. 2488-2489.
Britton, D. (2001). Acta Cryst. E57, o702-o704.
Britton, D. (2004). Acta Cryst. E60, o184-o186
Britton, D. \& Gleason, W. B. (2002). Acta Cryst. E58, o1375-o1377.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Desiraju, G. R. \& Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Metrangolo, P., Pilati, T., Resnati, G. \& Stevenazzi, A. (2004). Chem. Commun. pp. 1492-1493.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
Ojala, C. R., Ojala, W. H., Gleason, W. B. \& Britton, D. (1999). J. Chem. Crystallogr. 29, 27-32.
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxforshire, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3921 [doi:10.1107/S1600536807041451]
Ethyl 4-cyano-5-iodo-3-methylthiophene-2-carboxylate
J. Moncol, Z. Puterová and D. Végh

Comment

The family of well defined oligothiophene derivatives is important for polymer research, electronic semiconducting materials, non-linear optical materials and highly ordered molecular assemblies. Thiophene based oligomers are among the most investigated systems for technological applications, due to their chemical stability and wide spread possibility of functionalization. Moreover, they are relative to some other conjugated systems and represent structures with high labeled molecular architecture. Etyl 5-iodo-4-cyano-3-methylthiophene-2-carboxylate represents an important building block in desing of oligothiophene structure, in terms of its well defined molecular structure. We report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1), the bond lengths are in accordance with those observed in ethyl 5-amino-4-cyano-3-methylthiophene-2-carboxylate (refcode: DACLIC; Apinitis et al., 1984). A weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1) is also comparable with the corresponding one in DACLIC.

A cyclamer is formed by the association of two monomers through weak intermolecular CN \cdots I Lewis acid-base interactions (Fig. 2). The CN‥I distances are in accordance with the expected values from non-spherical radii of Nyburg \& Faerman (1985). The angles at the N atoms are closer to trigonal, but the angles at the I atoms are approximately linear. In (I), the $\mathrm{N} \cdots \mathrm{I}$ distance, $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ and $\mathrm{N} \cdots \mathrm{I}-\mathrm{C}$ angles are $3.142(3) \AA, 166.9(1)^{\circ}$ and $123.1(1)^{\circ}$, respectively. The significant $\mathrm{CN} \cdots$ I interactions (in the range of 2.9-3.3 \AA) are well known in more organic molecules containing iodo and cyano groups (Bond et al., 2001; Britton, 2001, 2004; Desiraju \& Harlow, 1989; Ojala et al., 1999), and as well as in organic co-crystals, organic cyano- and iodo-compounds (Bailey et al., 2000; Britton \& Gleason, 2002; Metrangolo et al., 2004).

Experimental

For the preparation of the title compound, (I), etyl 5-amino-4-cyano-3-methylthiophene-2-carboxylate ($12.0 \mathrm{mmol}, 2.5 \mathrm{~g}$) was added to a solution of p-toluenesulphonic acid $(36.0 \mathrm{mmol}, 6.4 \mathrm{~g})$ in acetonitrile (50 ml). The resulting solution was cooled to $283-288 \mathrm{~K}$ and added to a solution of $\mathrm{NaNO}_{2}(1.6 \mathrm{~g}, 24 \mathrm{mmol})$ and $\mathrm{KI}(5.2 \mathrm{~g}, 30 \mathrm{mmol})$ in water (10 ml), gradually. The reaction mixture was stirred for 10 min , then allowed to come 293 K and stirred for 3 h . Then, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml}), \mathrm{NaHCO}_{3}$ (1 M , until $\mathrm{pH}=9-10$) and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{M}, 6 \mathrm{ml})$ were added to the reaction mixture. The precipitated iodine was filtered and purified by flash flow column chromatography (i-hexane/ethylacetate, $5: 1$) (yield: $2.7 \mathrm{~g}, 73 \%$, m.p. 395-398 K).

Refinement

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.97$ and $0.96 \AA$ for methylene and methyl H , and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C})$, where $x=1.2$ for methylene H , and $x=1.5$ for methyl H atoms.

supplementary materials

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Two-membered cyclamers of (I), through CN \cdots I intermolecular interactions.

Ethyl 4-cyano-5-iodo-3-methylthiophene-2-carboxylate

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{INO}_{2} \mathrm{~S}$
$M_{r}=321.12$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=4.3132$ (1) \AA
$b=9.4355$ (3) \AA
$c=13.8210(4) \AA$
$\alpha=87.736(2)^{\circ}$
$\beta=84.396(2)^{\circ}$
$\gamma=86.166(2)^{\circ}$
$V=558.23(3) \AA^{3}$
$Z=2$
$F_{000}=308$
$D_{\mathrm{x}}=1.910 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71069 \AA$
Cell parameters from 9412 reflections
$\theta=3.6-29.5^{\circ}$
$\mu=3.03 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Needle, colourless
$0.73 \times 0.10 \times 0.06 \mathrm{~mm}$

Data collection

Oxford Diffraction Gemini R CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 10.4340 pixels mm^{-1}
$T=298$ (2) K
ω and φ scans
Absorption correction: analytical
(Clark \& Reid, 1995)
$T_{\text {min }}=0.383, T_{\text {max }}=0.872$
16856 measured reflections
2663 independent reflections
1947 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=28.0^{\circ}$
$\theta_{\text {min }}=3.6^{\circ}$
$h=-5 \rightarrow 5$
$k=-12 \rightarrow 12$
$l=-18 \rightarrow 18$

Refinement

Refinement on $F^{2} \quad$ Secondary atom site location: difference Fourier map

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.067$
$S=1.02$
2663 reflections
129 parameters
Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0398 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.95 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.47 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
I1	$0.22760(4)$	$-0.076548(19)$	$0.127435(14)$	$0.05116(10)$
S1	$0.53223(18)$	$0.09997(8)$	$0.29133(6)$	$0.04452(18)$
N1	$0.0199(8)$	$0.3059(3)$	$-0.0005(2)$	$0.0684(8)$
O1	$0.7918(5)$	$0.2529(2)$	$0.43010(15)$	$0.0511(5)$
O2	$0.7225(6)$	$0.4763(2)$	$0.36908(17)$	$0.0631(6)$
C1	$0.3505(6)$	$0.1064(3)$	$0.1876(2)$	$0.0417(7)$
C2	$0.3038(6)$	$0.2436(3)$	$0.1528(2)$	$0.0407(6)$
C3	$0.4183(7)$	$0.3469(3)$	$0.2102(2)$	$0.0425(7)$
C4	$0.5503(7)$	$0.2834(3)$	$0.2882(2)$	$0.0400(6)$
C5	$0.6954(7)$	$0.3497(3)$	$0.3649(2)$	$0.0438(7)$
C6	$0.9331(8)$	$0.3055(4)$	$0.5121(2)$	$0.0561(8)$
H6A	0.7802	0.3640	0.5515	0.067^{*}
H6B	1.1052	0.3629	0.4889	0.067^{*}
C7	$1.0460(11)$	$0.1831(4)$	$0.5701(3)$	$0.0777(12)$
H7A	0.8713	0.1360	0.6018	0.117^{*}
H7B	1.1698	0.2147	0.6181	0.117^{*}
H7C	1.1710	0.1182	0.5283	0.117^{*}
C8	$0.1475(8)$	$0.2777(3)$	$0.0666(2)$	$0.0494(8)$
C9	$0.3939(9)$	$0.5037(3)$	$0.1845(3)$	$0.0615(9)$
H9A	0.2195	0.5483	0.2229	0.092^{*}
H9B	0.3645	0.5175	0.1167	0.092^{*}
H9C	0.5821	0.5452	0.1975	0.092^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.05619(16)$	$0.04507(14)$	$0.05412(16)$	$-0.00672(9)$	$-0.00908(10)$	$-0.00998(9)$
S1	$0.0518(4)$	$0.0387(4)$	$0.0444(4)$	$-0.0020(3)$	$-0.0121(3)$	$-0.0014(3)$
N1	$0.086(2)$	$0.0612(18)$	$0.0629(19)$	$0.0001(16)$	$-0.0329(17)$	$-0.0107(15)$
O1	$0.0613(13)$	$0.0456(12)$	$0.0504(13)$	$-0.0053(10)$	$-0.0236(10)$	$-0.0031(10)$
O2	$0.0886(17)$	$0.0412(12)$	$0.0651(15)$	$-0.0122(11)$	$-0.0278(12)$	$-0.0065(11)$
C1	$0.0403(15)$	$0.0451(16)$	$0.0405(16)$	$-0.0021(13)$	$-0.0063(12)$	$-0.0069(13)$
C2	$0.0416(15)$	$0.0429(16)$	$0.0380(16)$	$-0.0045(13)$	$-0.0059(12)$	$0.0019(13)$
C3	$0.0412(15)$	$0.0398(15)$	$0.0468(17)$	$-0.0028(13)$	$-0.0050(13)$	$-0.0029(13)$
C4	$0.0427(16)$	$0.0338(14)$	$0.0433(16)$	$-0.0007(12)$	$-0.0047(13)$	$-0.0005(12)$
C5	$0.0403(16)$	$0.0478(18)$	$0.0437(17)$	$-0.0058(14)$	$-0.0028(13)$	$-0.0043(14)$
C6	$0.068(2)$	$0.057(2)$	$0.0474(18)$	$-0.0104(17)$	$-0.0223(16)$	$-0.0065(15)$
C7	$0.109(3)$	$0.069(2)$	$0.061(2)$	$-0.021(2)$	$-0.031(2)$	$0.0047(19)$
C8	$0.0560(19)$	$0.0422(17)$	$0.0503(19)$	$-0.0011(15)$	$-0.0094(16)$	$0.0001(14)$
C9	$0.079(2)$	$0.0405(18)$	$0.068(2)$	$-0.0041(17)$	$-0.0247(19)$	$0.0023(16)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{I} 1-\mathrm{C} 1$	$2.067(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.697(3)$
$\mathrm{S} 1-\mathrm{C} 4$	$1.736(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.138(4)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.333(4)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.457(4)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.212(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.372(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.424(4)$
$\mathrm{C} 2-\mathrm{C} 8$	$1.440(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.367(4)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4$	$91.75(14)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 6$	$116.8(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$111.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{I} 1$	$127.3(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{I} 1$	$121.34(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$114.0(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8$	$122.1(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 8$	$123.9(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$110.7(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 9$	$126.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$	$122.7(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$128.7(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$112.2(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{S} 1$	$119.1(2)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	$124.4(3)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$124.4(3)$

C3-C9	$1.507(4)$
C4-C5	$1.464(4)$
C6-C7	$1.463(5)$
C6-H6A	0.9700
C6-H6B	0.9700
C7-H7A	0.9600
C7-H7B	0.9600
C7-H7C	0.9600
C9-H9A	0.9600
C9-H9B	0.9600
C9-H9C	0.9600
O1-C6-H6A	110.1
C7-C6-H6A	110.1
O1-C6-H6B	110.1
C7-C6-H6B	110.1
H6A-C6-H6B	108.4
C6-C7-H7A	109.5
C6-C7-H7B	109.5
H7A-C7-H7B	109.5
C6-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
N1-C8-C2	$178.8(4)$
C3-C9-H9A	109.5
C3-C9-H9B	109.5
H9A-C9-H9B	109.5
C3-C9-H9C	109.5

sup-4

supplementary materials

$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$111.2(2)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7$	$108.2(3)$
$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.5(2)$
$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1-\mathrm{I} 1$	$179.25(17)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.5(3)$
$\mathrm{I} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.3(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8$	$-178.6(2)$
$\mathrm{I} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8$	$1.6(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.1(4)$
$\mathrm{C} 8-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.0(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$	$179.4(3)$
$\mathrm{C} 8-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$	$-1.6(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$180.0(3)$
$\mathrm{C} 9-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.5(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$-0.3(3)$

$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 9-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$-179.7(3)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 3$	$0.5(2)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$	$-179.8(2)$
$\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 5-\mathrm{O} 2$	$1.2(4)$
$\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$-178.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$-1.0(5)$
$\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$179.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$178.5(3)$
$\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$-1.1(3)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7$	$-175.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8-\mathrm{N} 1$	$116(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 8-\mathrm{N} 1$	$-63(18)$

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9 — \mathrm{H} 9 \mathrm{C} \cdots \mathrm{O} 2$	0.96	2.55	$3.031(4)$	111

supplementary materials

Fig. 1

Fig. 2

